

Tetrahedron Letters 46 (2005) 5885-5888

Tetrahedron Letters

Biosynthetic studies on the antibiotics PF1140: a novel pathway for a 2-pyridone framework

Yuta Fujita, Hiroki Oguri and Hideaki Oikawa*

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Received 24 May 2005; revised 18 June 2005; accepted 22 June 2005

Available online 12 July 2005

Abstract—Incorporation of labeled acetate and L-serine into PF1140 in *Eupenicillium* sp. indicated that the skeleton of PF1140 is derived from five acetates and a L-serine. Upon administration of [1,3-¹³C₂]glycerol, a precursor of biotransformation into L-[1,3-¹³C₂]serine, the isotopic labels became contiguous in the resultant 2-pyridone of PF1140. Based on the feeding experiments, a novel and potentially general biosynthetic pathway for a 2-pyridone framework has been proposed, in which an acyl tetramic acid precursor could be converted via a ring expansion with loss of the hydroxyl group.

© 2005 Elsevier Ltd. All rights reserved.

Numerous fungi produce a series of N-hydroxy-pyridone antibiotics exemplified by PF1140 (1), tenellin (2),² ilicicolin H (3),³ leporins (4),⁴ fusaricides (5),⁵ and pyridoxatins (6)⁶ (Fig. 1). Certain members of this class are candidates for modulators of erythropoietin gene expression, 4b free radical scavengers, 6a inhibitors of ubiquinol-cytochrome c reductase, and anti-malarial drugs. In 1996, the structure of 1 with unspecified relative configuration was reported, ^{1a} and recently the stereochemistry of 1 including the absolute configuration has been elucidated by our group. 1b It is likely that 1 could be biosynthesized by a polyketide synthase and non-ribosomal peptide synthetase hybrid,9 and our biosynthetic studies focused on the formation of a 2-pyridone framework as well as the cyclization of a linear polyketide precursor leading to a fused carbocyclic skeleton. 10 Herein, we wish to propose a novel biosynthetic pathway for the 2-pyridone of 1 based on feeding experiments.

First of all, sodium [1^{-13} C]acetate was administered into the cultures of *Eupenicillium* sp. PF1140. ^{1a} Treatment of the resulting crude extract containing 1 with allyl bromide and K_2 CO₃ in acetone provided a less-polar derivative 8, which was purified by simple silica-gel chromatography (Fig. 2). ^{1b} Enhanced signals in the

Keywords: Antibiotics; PF1140; Biosynthesis; 2-Pyridone; Tetramic acid.

¹³C NMR of **8** were observed at the unambiguously assigned sites of C13, C9, C11, C7, and C2, compared with an unlabeled control sample (Table 1). ¹¹ Next, administration of sodium [1,2- 13 C₂]acetate and subsequent allylation yielded labeled **8** with characteristic satellite peaks flanking the natural abundance signal in the ¹³C NMR spectrum because of the incorporation of intact acetate units. These results proved that a total of five intact acetate units are joined in a head-to-tail fashion to form a pentaketide unit. Furthermore, administration of L-[Me- 13 C]methionine indicated that the branching three methyl groups on C8, C10, and C12 of the polyketide moieties are donated by the *S*-methyl group of L-methionine.

To verify the participation of amino acid precursors for the biosynthesis of the remaining part (N1 and C4-C6), L-[1- 13 C]serine and L-[1- 13 C]alanine were administered. The isotopic label derived from L-[1- 13 C]serine was detected at C4 in **8** (Table 1), whereas that of L-[1- 13 C]alanine was almost negligible. With these encouraging results, [1,3- 13 C2]glycerol, a precursor of the biotransformation into [1,3- 13 C2]serine **10**, was next introduced into *Eupenicillium* sp. (Fig. 3a). The 13 C NMR showed that satellite peaks are apparent at C4 and C5 (^{1}J = 64 Hz) in the resultant **8** (Fig. 3b), which is indicative of an intramolecular carbon skeletal rearrangement.

Based on the feeding experiments, we have shown, for the first time, the incorporation of L-serine into the

^{*}Corresponding author. Tel.: +81 11 706 2622; fax: +81 11 706 3448; e-mail: hoik@sci.hokudai.ac.jp

Figure 1. Naturally occurring 2-pyridone alkaloids (1-6) and an acyl tetramic acid 7.

$$\begin{array}{c} \bullet : [1^{-13}C] \text{ acetate} \\ \bullet^{-1} : [1,2^{-13}C_2] \text{ acetate} \\ \Delta : [1^{3}CH_3] \text{ L-methionine} \\ * : [1^{-13}C] \text{ L-serine} \\ \end{array}$$
 allyl bromide, K_2CO_3
$$\begin{array}{c} \bullet : [1^{-13}C] \text{ acetate} \\ \bullet : [1^{-13}C] \text{ L-serine} \\ \bullet : [1^{-13$$

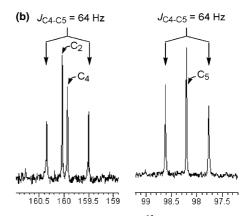

Figure 2. Biosynthetic origin of the carbon atoms of 1.

Table 1. 13 C NMR data of **8** obtained from feeding experiments with 13 C-labeled precursors

	δ_{C}	Relative ¹³ C enrichments ^a			$J_{\mathrm{C-C}}$ (Hz)
		[1- ¹³ C]- acetate	[S- ¹³ C]- methionine	[1- ¹³ C]- serine	$[1,2^{-13}C_2]$ -acetate
C-14	14.6				41
C-13	74.2	2.5			41
C-8	37.8				33
C-9	44.5	2.7			33
C-10	27.0				33
C-11	44.2	2.5			33
C-12	33.7				33
C-7	44.8	2.6			33
C-3	111.7				73
C-2	160.1	2.7			73
C-6	133.6				
C-5	98.2				
C-4	160.0			1.4	
8-Me	20.6		24.2		
10-Me	21.4		17.9		
12-Me	22.8		18.0		

^a Ratio of carbon signal intensities for enriched and natural abundance sample measured under identical conditions.

2-pyridone framework as well as the rearrangement of the original serine skeleton. In this context, a plausible biosynthetic pathway to 1 illustrated in Scheme 1a was derived. First, L-serine 10 is considered to combine with

Figure 3. (a) Incorporation of $[1,3^{-13}C_2]$ glycerol into 2-pyridone skeleton of **8**. (b) Sections of the ^{13}C NMR spectrum of **8**.

a polyketide moiety 11 to generate the acyltetramic acid intermediate 12, which is analogous to the biosynthesis of acyl tetramic acids such as euisetins 7 and pramanicins. Then, the critical ring expansion may occur by loss of the hydroxyl group and subsequent aromatization leading to 13. Finally, the *cis*-fused carbon skeleton is considered to be constructed either via a stepwise cyclization (pathway A) or a hetero Diels–Alder reaction (pathway B) to furnish 1.

Scheme 1. (a) A proposed biosynthetic route to 1. (b) A proposed biosynthetic mechanism for the 2-pyridone framework of 17.

To date, a number of biosynthetic studies for 2 and 3 revealed that the origins of the 2-pyridone framework are an aromatic amino acid, phenylalanine (or tyrosine), and a polyketide. 15 Nonetheless, condensation of these precursors and the subsequent steps leading to the 2-pyridone remain uncertain. Recently, Hamburger and co-workers proposed a biosynthetic route to the 2-pyridone of militarinone D (17), which involves a rearrangement of the original tyrosine skeleton via a quinone methide intermediate 18 (Scheme 1b). 16 Whereas their biosynthetic proposal cannot be applied to those of 1 and 4–6, our proposal for the rearrangement (12→13) featuring the loss of the hydroxyl group could be generally applicable for the biosynthesis of 5 and 6 via the possible serine-derived acyl tetramic acid intermediates. Similarly, we wish to propose an alternate mechanism for the conversion of the aromatic amino acid-derived acyl tetramic acid intermediates into 2-4 and 17 as exemplified in Scheme 1b (16 \rightarrow 17).

In summary, a novel and potentially general biosynthetic pathway for a 2-pyridone framework has been proposed, in which an acyl tetramic acid precursor could be converted via a ring expansion with loss of the hydroxyl group. Currently, we are engaged in a genetic

analysis clarifying the machinery of biosynthetic enzymes as well as a synthetic approach identifying the actual intermediate.

Acknowledgements

The authors thank Dr. Shuichi Gomi (Meiji Seika Co.) for providing the PF1140-producing fungal culture, the fermentation conditions and a PF1140 standard. We are grateful to High Resolution NMR Laboratory, Faculty of Science, Hokkaido University for ¹³C NMR measurement.

References and notes

- (a) Hosoya, R.; Yugami, T.; Yoshida, S.; Yaguchi, T.; Komuro, K.; Sasaki, T. Japanese Patent 07,267,962-A; Chem. Abstr. 1996, 124, 143744k.; (b) Fujita, Y.; Oguri, H.; Oikawa, H. J. Antibiot., in press.
- (a) El Basyouni, S. H.; Brewer, D.; Vining, L. C. Can. J. Bot. 1968, 46, 441; (b) McInnes, A. G.; Smith, D. G.; Wat, C.-K.; Vining, L. C.; Wright, J. L. C. J. Chem. Soc., Chem. Commun. 1974, 8, 281.

- Matsumoto, M.; Minato, H. Tetrahedron Lett. 1976, 17, 3827.
- (a) TePaske, M. R.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. *Tetrahedron Lett.* 1991, 32, 5687; (b) Zhang, C.; Jin, L.; Mondie, B.; Mitchell, S. S.; Castelhano, A. L.; Cai, W.; Bergenhem, N. *Bioorg. Med. Chem. Lett.* 2003, 13, 1433.
- McBrien, K. D.; Gao, Q.; Huang, S.; Klohr, S. E.; Wang, R. R.; Pirnik, D. M.; Neddermann, K. M.; Bursuker, I.; Kadow, K. F.; Leet, J. E. J. Nat. Prod. 1996, 59, 1151.
- (a) Teshima, Y.; Shin-ya, K.; Shimazu, A.; Furihata, K.; Chul, H. S.; Furihata, K.; Hayakawa, Y.; Nagai, K.; Seto, H. *J. Antibiot.* 1991, 44, 685; (b) Cai, P.; Smith, D.; Cunningham, B.; Brown-Shimer, S.; Katz, B.; Pearce, C.; Venables, D.; Houck, D. *J. Nat. Prod.* 1999, 62, 397.
- Gutierrez-Cirlos, E. B.; Merbitz-Zahrandnik, T.; Trumpower, B. L. J. Biol. Chem. 2004, 279, 8708.
- 8. Isaka, M.; Tanticharoen, M.; Kongsaeree, P.; Thebtaranonth, Y. J. Org. Chem. 2001, 66, 4803.
- (a) Harrison, P. H. M.; Duspara, P. A.; Jenkins, S. I.; Kassam, S. A.; Liscombe, D. K.; Hughes, D. W. Perkin 1 2000, 24, 4390; (b) Song, Z.; Cox, R. J.; Lazarus, C. M.; Simpson, T. J. ChemBioChem 2004, 5, 1196; (c) Sims, J. W.; Fillmore, J. P.; Warner, D. D.; Schmidt, E. W. Chem. Commun. 2005, 186.
- 10. Oikawa, H. J. Org. Chem. 2003, 68, 3552.
- 11. The labeled compounds: [1-¹³C]acetate (100 mg), [1,2-¹³C₂]acetate (100 mg), [S-¹³C]methionine (100 mg), L-[1-¹³C]serine (50 mg), L-[1-¹³C]alanine (100 mg), and

- [1,3-¹³C₂]glycerol (100 mg) were administered, respectively.
- Recently, Clardy and co-workers suggested that the 2-pyridone of akanthomycins could be biosynthesized by condensation of alanine with a polyketide chain, see: Wagenaar, M. M.; Gibson, D. M.; Clardy, J. Org. Lett. 2002, 4, 671.
- For excellent reviews, see: (a) Royles, B.-J. L. Chem. Rev. 1995, 95, 1981; (b) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435
- For recent reviews, see: (a) Ichihara, A.; Oikawa, H. In Comprehensive Natural Products Chemistry; Barton, D., Nakanishi, K., Meth-Cohn, O., Eds.; Elsevier: Amsterdam, 1999; Vol. 1, p 367; (b) Stocking, E. M.; Williams, R. M. Angew. Chem., Int. Ed. 2003, 42, 3078; (c) Oikawa, H.; Tokiwano, T. Nat. Prod. Rep. 2004, 21, 321.
- (a) McInnes, A. G.; Smith, D. G.; Walter, J. A.; Vining, L. C.; Wright, J. L. C. J. Chem. Soc., Chem. Commun. 1974, 8, 282; (b) Leete, E.; Kowanko, N.; Newmark, R. A.; Vining, L. C.; McInnes, A. G.; Wright, J. L. C. Tetrahedron Lett. 1975, 16, 4103; (c) Wright, J. L. C.; Vining, L. C.; McInnes, A. G.; Smith, D. G.; Walter, J. A. Can. J. Biochem. 1977, 55, 678; (d) Tanabe, M.; Urano, S. Tetrahedron 1983, 39, 3569; (e) Cox, R. J.; O'Hagan, D. J. Chem. Soc., Perkin. Trans. 1 1991, 10, 2537; (f) Moore, M. C.; Cox, R. J.; Duffin, G. R.; O'Hagan, D. Tetrahedron 1998, 54, 9195.
- Schmidt, K.; Riese, U.; Li, Z.; Hamburger, M. J. Nat. Prod. 2003, 66, 378.